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The problem of the dynamic loading of plane elastic domains with an irregular boundary is considered. The energy solution of
this problem in the theory of elasticity is constructed using a modified Kostrov method [1] and ideas on the extension of symmetric
operators in Hilbert space. A solution of the problem of the loading of a wedge and a domain with a contour which contains m
corners is obtained. © 1997 Elsevier Science Ltd. All rights reserved.

1. In the case of the plane harmonic motion of an elastic medium, the potentials of the longitudinal
®(r, 0) and transverse ¥(r, 8) waves satisfy the Helmholtz equations

AD+ED=0, AY+k2¥=0; k,=w/c, (1.1)

where ¢;(c,) is the propagation velocity of the longitudinal (transverse) waves.

Suppose that an elastic medium, which is characterized by the Lamé constants A and p and a density
p, occupies an infinite wedge-shaped domain Q(—a, a) = {r = 0, —a = 0 = o}. The displacements u,, uq,
which correspond to the specified potentials, are defined in a polar system of coordinates by the formulae

90 1o¥ 100 3¥ (1.2)
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Two types of loadings exist for which the boundary conditions are established independently for the
longitudinal and transverse potentials and, consequently, they can be separated. This is the problem
of the loading of a wedge, adjoining a rigid medium, with shear stresses and surface forces normal to
the boundary which, according to the clamping conditions, cannot have any tangential displacements.

However, for the correct formulation of the problem, it is necessary to add to the equations for the
potentials and the boundary conditions the conditions governing the behaviour of the required fields
in the neighbourhood of the singular points of the domain, that is, close to the edge r = 0 and infinity
r— oo,

A natural energy condition on the edge, which is equivalent to the requirement that the law of
conservation of energy must be satisfied, can be formulated in the form

u=0("), p>0, when r >0 (1.3)

The radiation conditions must be satisfied at infinity [2]. It has been shown [1, 3] that the requirement
that the condition on the edge is satisfied does not enable one to reduce the problem completely to
two acoustic cases, even with boundary conditions which permit separation of the potentials. The problem
of the incidence of a plane wave on a rigid wedge inserted without friction into an infinite elastic medium
has been considered in (1, 3].

Below, we consider the problem of the dynamic loading of plane domains with contour corner points.
The loading was selected in such a way that the boundary conditions were set up independently for the
longitudinal and transverse potentials.

We will consider the problem of the dynamic loading of a wedge. A wedge, the boundaries of which
cannot have tangential displacements, by the clamping conditions, is loaded with surface forces normal
to the edges, and these forces oscillate as exp(iw¢)

Gee(r, 20) = hi(r), u(r,2o) =0, O<r<eo (14)
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A certain wave motion is therefore excited in the domain Q(-a, o).
In view of the linearity, the problem splits into two independent problems, a symmetric problem and
an antisymmetric problem

(2) Ogo(r, £0) = h(r), (b) Oeq(r, ) = £h(r) (1.5)

We shall consider the symmetric formulation. In terms of the wave potentials, the boundary conditions
(1.4) and (1.5) will be satisfied if it is required that

1 ¥ 1,
Dly_so = P h(r), % - = g rh’(r) (1.6)
=t

Summarizing what has been said, we arrive at the following problem.

Problem. It is required to find the fields ® and ¥ which, in the region Q(—o, o), satisfy differential
equations (1.1), boundary conditions (1.6), the condition on the edge (1.3) and the radiation conditions.

2. We will first attempt to find a solution of the problem by solving two acoustic problems for the
longitudinal and transverse potentials independently, ignoring the condition on the edge.

We will seek solutions of the Helmholtz equations of the class WZIOC(Q) when the radlauon conditions
are satisfied. Note that the problems are uniquely solvable in this class.

We therefore have a Dirichlet boundary-value problem for the potential &, and a Neumann problem
for ¥,. The exact solution of the problems can be obtained using a Kontorovich-Lebedev integral
transform [4].

In the case of symmetric loading, the solutions of the acoustic problems can be expressed in terms
of the following integrals

o0 oo

h(x
¢a(rve)_ 2 I .' K "'l(r’x “)d’:dp'
pO—te- x

¥, (r,0)= 0)2 I fh'(x)xz(r x,\)dxdp

sinmpe ™ H® (k. r)H® (k, x
IRk T T

It can be shown that each of the potentials &, and ‘¥, satisfies the radiation condition.

The integral representation formula for the product of MacDonald functions [5], modified for Hankel
functions

2e"™
T sin v

HP)HP (y)=- [ Jo(Yx* +y* —2xychr)shveds

Ilny/x|
x>0, y>0, |[Rev|< Y,

can be used to find the asymptotic form of the solutions close to the wedge vertex (x > r).
After some calculations, we obtain

®,(r,8) =1, (0)r® cos §e°fi'(—:lK§(ik,x)dx +o(l) = Ar® cos&0 +o(1) (2.1)
[

¥, (r,8) = -1, (ct)r®sin §6Th’(x)K§(z'k2x)dx +o(1) = Br¥sinE0+o(1)
.}

2n(ik, )> .
22§r(§+1) 2a

For simplicity, we shall assume that the load k(r) acts at a certain distance from the wedge vertex,
which ensures that the integrals in (2.1) converge.

M. (0) =
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Therefore, if the potentials ® and ¥ are sought independently of one another, the condition on the
edge will not be satisfied when o > #/2 and, consequently, the displacements become infinitely large
close to the wedge vertex.

Note that, in the case of an antisymmetric load, each of the potentials satisfies the condition on the
edge and, consequently, the problem can be reduced to two acoustic problems.

3 In order to construct the energy solution when a > #/2, we replace the requirement that ®, ¥ €
W ioc(Q2) by the condition @, ¥ € L .(Q) and consider the behaviour of the required functions close
to the wedge vertex. The solution of the problem for the potential ®(r, 8) € Ly,(€2) at short distances
r has the form

@(r, 8) = Arcos(£0) + bi(r, 8) + o(1) (31)

where {(r, 8) is a function which satisfies the Helmholtz equation in the domain £, the homogeneous
Dirichlet condition in dQ\O and admits of the representation

£(r. 8) = riy(r)cosE + Z (3.2)
Here, x(7) is a smooth function of the “cut-off” type, x(0) = 1 and Z(r, 8) € W}, (Q) “removes the residual”

IZ =g (ri8)cosEO, Zlg_sq =0
g (r;E)= -r"’:[x"(r)+1rx'(r)(1 —2E)+k2riy(r)

where I' is the Helmholtz operator.
The function Z can be represented in the form [6]

Z(r, 8) = cr(r)cost® + R, R € Wae D) (3.3)

In order to find the constant ¢ we use a technique which is similar to that described previously in [7].
Using Green’s formula for the Helmholtz operator for the functions {(r, 8) and Z(r, 8) in the domain
Qs = Q\B;, where By is a sphere of radius & with its centre at r = 0, we have

Is = | &(r:8){(r.0)cos8dQy = | ({TZ- ZTC)d,; = | (?_Z_;_ Zi;-)dana
Qy g an an

Q5
Substituting relation (3.3) into the last integral, we obtain

a
Iy =c [2E87" cos® £8485 + 8% x O(1) = e +0(1), §— 0

-a

and, finally
c= %‘[)g‘ (r;€)(r,8)cos£8dQ (34

Hence, the set of solutions of the problem for the potential & in the space Ly (£2) has the following
asymptotic form close to the vertex
O(r,0)= ArS cos E0+ b(r'g cos&0+ cr® cos £8)+o(1)

An analogous expression is obtained for the asymptotic form of all possible solutions of the class
L310e(€2) for the potential ¥

W(r,0) = Br®sin£0 + d(r~5 sin£0 + er® sin£0) + o(1)

1 -~
e=—[g,(r;E){(r,0)sin E6dQ
o
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where £(r, ©) is a function which satisfies the Helmholtz equation in the domain Q, the homogeneous
Neumann condition on dQ\O and admits of the representation

E(r.0)=rSy(r)sink8+Z, Z(r,0)e Wi, (Q)

4. In order to find the solution of the problem in the theory of elasticity (to determine the constants
b and d), we make use of the condition on the edge (1.3).
Close to the vertex, the components of the displacement vector can be represented in the form

u, =E[(A+ch+ B+ed)r"™ +(b-d)r""]cosE8 +o(1)
ug =E[(~A~cb— B—ed)r*™" +(d - b)r > IsinE0+ o(1)
The constants b and d are found by equating the coefficients of the different powers of 7.

5. We will now consider the problem in a polygonal domain Q which has m corners {o, . . ., o, }.
It is assumed here that, outside a sphere of large radius, the domain coincides with a corner. As
previously, we shall assume that the contour is loaded with normal surface forces which oscillate as
exp (ic¢) and that the tangential displacements in the boundary are equal to zero

Oeolag = h(r), ulap=0

The radiation conditions are satisfied at infinity. Using results obtained previously [6], it can be shown
that, close to the ith corner, the principal terms of the asymptotic forms of the acoustic solutions have
the form

¢ = A,rf" cos§0; +o(l), ¥, = B,-rf" sin§8; +o(l); §; = I (5.1)

a = 2a

where r;, 6; are polar coordinates with the centre at the vertex of the ith corner (henceforth there is no
summation over repeated indices). In order to find the constants 4;, we make use of Green’s formula
for the functions {; and @, in the domain Q5 = Q\{Uj~,B5,}. We have
Li(n= ’i-CiX('i)COS?;iei +Z;=
m . _
= r,.‘g"x(ri )cosE0, + Y, c,-jrf’ x(r;)cos §j6j +R, R e W22,oC (Q) (52)
j=1
Taking account of (5.2) and the boundary conditions for @, and , we obtain

o= 1 (2,0, 5V -

905
¢ 2 1 d&;
=Ai2§i I cos éieide,-——— I —h(x)dx+0(l), 8—)0
-0; w’p, 05 an
and finally, taking the limit, we have
l I i)—--h(x)dx
P ag On

As previously, in order to construct the energy solution of the problem in the theory of elasticity we
replace the requirement that @, ¥ € W} (Q) with the condition @, ¥ € Lyo(Q). The solution of the
problem for the potential ® then has the form [7]

®=0,+ 3550 (53)
i=1

In the same way as above, we use Green’s formula for the functions {; and Z; in the domain Qj to
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determine the constants c;. We obtain
0Z; al;
= . , - Z.TC. = —Lr - Z. X ldo
I ‘{s 4Tz, - Z;T¢,dg; B‘Jk ( - 8i-Z an) s

We recall that Z; satisfies the equation
TZ;=-g(rj §)cosEH;

By virtue of the boundary conditions in the expressions for 5, only integrals along arcs of circles of
small radii & close to the corners remain. Taking account of (5.2), we obtain that the integral close to
the ith corner makes the main contribution to I3 and, consequently

Iy = ]FZjl;i(r)dQs =
%

§

o
= cj"[ f 88,8785 cos? £ dB; + 842 x O) | = e + (1)
-a

where q; is the largest corner differing from o
Hence

a -

[§;(nTZ,dQ
Q

The matrix {c;} is symmetric.

In order to prove this, we use Green’s formula for the Helmholtz operator for the functions {; and §; in the case
of fixed i # j. Taking account of (5.2) and the boundary conditions we obtain that integrals along arcs of small
radius § close to the ith and jth corners make the main contribution to the integral along the contour. We have

ac d i
0= aifk(-sn]—C' —c, -%]dBQB = n(cﬁ —C,'j)+0(l), 60

Taking the limit, we obtain the required equality.

The set of solutions of class Lz,oc(é) for the potential ¥

W= +3dl0x) (5.4)
i=1

can be obtained in an analogous manner. Here z,- are functions which satisfy the Helmholtz equation
in the domain Q, the homogeneous Neumann condition in dQ\O; and admit of the representation

gi(r) = r'_glx(r,)sln §,-9,~ + ile,jrf’x(r])sin 5)91 + R", e,:" = % Jé,(f)rzldQ
j= 1Y)

({e;} is a symmetric matrix).
The coefficients B; of the asymptotic representation (5.1) are calculated using the formulae

1 If;,-h’(r)rdr

B =-
" ome?p

6. In order to find the solution which possesses a finite energy, we have m relations close to the corners

%%+%%=Q(Gp), p>0, when r,—>0

i
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Substituting expressions (5.3) and (5.4) into the conditions close to the corners, we obtain 2m relations
for determining the constants b;, d;

b,- =d,-, A,- +B" + i(cﬂbj +el,d1)=0, i=l..m
=
or
b=~C+Ey'(A+B)

where b, A and B are m-dimensional vectors, and C and E are symmetric m X m matrices.
Note that, when there are no corners on the contour, each of the potentials satisfies the conditions
on the edge and, consequently, the problem can be completely reduced to two acoustic problems.
We wish to thank S. A. Nazarov for stimulating discussions.
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