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The problem of the dynamic loading of plane elastic domains with an irregular boundary is considered. The energy solution of 
this problem in the theory of elasticity is constructed using a modified Kostrov method [l] and ideas on the extension of symmetric 
operators in Hilbert space. A solution of the problem of the loading of a wedge and a domain with a contour which contains m 
comers is obtained. 0 1997 Elsevier Science Ltd. Ail rights reserved. 

1. In the case of the plane harmonic motion of an elastic medium, the potentials of the longitudinal 
@(r, Cl) and transverse Y(r, Cl) waves satisfy the Helmholtz equations 

A@+k,%=O, AY+k,2’I’=O; k, =ofc,, (l-1) 

where cl(~) is the propagation velocity of the longitudinal (transverse) waves. 
Suppose that an elastic medium, which is characterized by the Lam6 constants h and p and a density 

p, occupies an infinite wedge-shaped domain &2(-o, ol) = {r 2 0, -o 2 0 2 a}. The displacements u,, ue, 
which correspond to the specified potentials, are defined in a polar system of coordinates by the formulae 

(1.2) 

Two types of loadings exist for which the boundary conditions are established independently for the 
longitudinal and transverse potentials and, consequently, they can be separated. This is the problem 
of the loading of a wedge, adjoining a rigid medium, with shear stresses and surface forces normal to 
the boundary which, according to the clamping conditions, cannot have any tangential displacements. 

However, for the correct formulation of the problem, it is necessary to add to the equations for the 
potentials and the boundary conditions the conditions governing the behaviour of the required fields 
in the neighbourhood of the singular points of the domain, that is, close to the edge r = 0 and infinity 
r + 00. 

A natural energy condition on the edge, which is equivalent to the requirement that the law of 
conservation of energy must be satisfied, can be formulated in the form 

u=O(P), p>O, whenr+O (1.3) 

The radiation conditions must be satisfied at infinity [2]. It has been shown [l, 31 that the requirement 
that the condition on the edge is satisfied does not enable one to reduce the problem completely to 
two acoustic cases, even with boundary conditions which permit separation of the potentials. The problem 
of the incidence of a plane wave on a rigid wedge inserted without friction into an infinite elastic medium 
has been considered in [l, 31. 

Below, we consider the problem of the dynamic loading of plane domains with contour comer points. 
The loading was selected in such a way that the boundary conditions were set up independently for the 
longitudinal and transverse potentials. 

We will consider the problem of the dynamic loading of a wedge. A wedge, the boundaries of which 
cannot have tangential displacements, by the clamping conditions, is loaded with surface forces normal 
to the edges, and these forces oscillate as exp(iwt) 

odr, *a) = h*(r), u,(r, *a) = 0, 0 < r < - (1.4) 
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A certain wave motion is therefore excited in the domain a(+., a). 
In view of the linearity, the problem splits into two independent problems, a symmetric problem and 

an antisymmetric problem 

(a) o&r, *a) = h(r), (b) a&r, *a) = Hz(r) (1.5) 

We shall consider the symmetric formulation. In terms of the wave potentials, the boundary conditions 
(1.4) and (1.5) will be satisfied if it is required that 

%=*a = L av 1 

W2P h(r)v 
--h’(r) 

ae,=*, = 02p 

Summarizing what has been said, we arrive at the following problem. 

Problem. It is required to find the fields Q? and Y which, in the region Q(-a, a), satisfy differential 
equations (l.l), boundary conditions (1.6), the condition on the edge (1.3) and the radiation conditions. 

2. We will first attempt to fmd a solution of the problem by solving two acoustic problems for the 
longitudinal and transverse potentials independently, ignoring the con_dition on the edge. 

We will seek solutions of the Hehnholtz equations of the class lV&,@) when the radiation conditions 
are satisfied. Note that the problems are uniquely solvable in this class. 

We therefore have a Dirichlet boundary-value problem for the potential a,, and a Neumann problem 
for Y,. The exact solution of the problems can be obtained using a Kontorovich-Lebedev integral 
transform [4]. 

In the case of symmetric loading, the solutions of the acoustic problems can be expressed in terms 
of the following integrals 

It can be shown that each of the potentials a, and yd satisfies the radiation condition. 
The integral representation formula for the product of MacDonald functions [5], modtied for Hankel 

functions 

@(x)#‘(y) - - 2ew ” ” - G,, 
n 
~,xJr,h/~2 +y2 -2xycht)shvtdt 

x>O, y>O, lRevl<Y, 

can be used to find the asymptotic form of the solutions close to the wedge vertex (x s r). 
After some calculations, we obtain 

@,(r,e) =q,(a)G cosQ3~h(xX) -K~(ik,x)dx+o(l)=ArScos&3+o(l) 

Yu(r,e)=-q2(a)rcsin@3~h’(x)Kg(&x)&+o(l)= BrSsin&+o(l) 
a 

WG = 
2x( ik, ){ 

ad25r(5+ 1) 

(2-l) 

For simplicity, we shall assume that the load h(r) acts at a certain distance from the wedge vertex, 
which ensures that the integrals in (2.1) converge. 
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Therefore, if the potentials CD and V are sought independently of one another, the condition on the 
edge will not be satisfied when a > x/2 and, consequently, the displacements become infinitely large 
close to the wedge vertex. 

Note that, in the case of an antisymmetric load, each of the potentials satisfies the condition on the 
edge and, consequently, the problem can be reduced to two acoustic problems. 

3. In-order to construct the energy sol_ution when a > x/2, we replace the requirement that 0, I E 
W~&Z) by the condition @, P E &,#J) and consider the behaviour of the requ&ed functions close 
to the wedge vertex. The solution of the problem for the potential @(r, Cl) E L2r,(s2) at short distances 
r has the form 

W-9 6) = Ar%os(&b) + b<(r, e) + o(l) (3-l) 

where c(r, 0) is a function which satisfies the Hehnholtx equation in the domain Q the homogeneous 
Dirichlet condition in &\0 and admits of the representation 

c(r. e) = +(r)c0s~e + 2 (3.2) 

Here, x(r) is a smooth function of the “cut-off” type, x(O) = 1 and Z(r, 6) E W&,&) “removes the residual” 

IT = g,(r;{)cos{B, Zle=*a = 0 

gh(r;S) = -r-S[f’(r)+~f(r)(l-2Q+kfr2~(r)] 

where I is the Hehnholtz operator. 
The function 2 can be represented in the form [6] 

Z(r, 0) = c&(r)cos&I + R, R E ti2,&15) (3.3) 

In order to find the constant c we use a technique which is similar to that described previously in [7]. 
Using Green’s formula for the Helmholtx operator for the functions c(r, e) and Z(r, 0) in the domain 

& = QBa, where Bs is a sphere of radius 6 with its centre at r = 0, we have 

Substituting relation (3.3) into the last integral, we obtain 

l~=c~2~~-‘cos2&kf6+6~xo(l)=Rc+o(l.), 6+0 
-a 

and, finally 

c = ~~(r;5)WW~s&ffQ (3.4) 

Hence-, the set of solutions of the problem for the potential Q, in the space L2t,(fi) has the following 
asymptotic form close to the vertex 

aqr,ej=Ar~c0s~e+b(r-~c0s~e+cr~~0~~e)+O(l) 

An_analogous expression is obtained for the asymptotic form of all possible solutions of the class 
L2&Z) for the potential Y 

W. 0) = Br5 sin ge + d(rsS sin &I + ert sin {Cl) + 0(l) 

e=i-(r:S&,e)sing&m 
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where f(r, Cl) is a function which satisfies the Hehnholtz equation in the domain R, the homogeneous 
Neumann condition on Xl\0 and admits of the representation 

4. In order to find the solution of the problem in the theory of elasticity (to determine the constants 
b and d), we make use of the condition on the edge (1.3). 

Close to the vertex, the components of the displacement vector can be represented in the form 

u, =&(A+cb+B+ed)k +(b-d)r+‘]cos&I+o(l) 

us = {[(-A-&- B-ed)rS-’ +(d- b)r-S-‘]sin&l+o(l) 

The constants b and d are found by equating the coefficients of the different powers of r. 

5. We will now consider the problem in a polygonal domain Q which has m comers {ai, . . . , s}. 
It is assumed here that, outside a sphere of large radius, the domain coincides with a comer. As 
previously, we shall assume that the contour is loaded with normal surface forces which oscillate as 
exp (iot) and that the tangential displacements in the boundary are equal to zero 

o&Q = h(r), &kJQ = 0 

The radiation conditions are satisfied at infinity. Using results obtained previously [6], it can be shown 
that, close to the ith comer, the principal terms of the asymptotic forms of the acoustic solutions have 
the form 

@u = AiQ’ cos @i + o(l), ‘Vu = Bi$ sin &I+ + u( 1); ki = $ 
I 

(5.1) 

where ri, 0, are polar coordinates with the centre at the vertex of the ith comer (henceforth there is no 
summation over repeated indices). In order to find the constants Ai, we make use of Green’s formula 
for the functions & and a, in the domain Qs = Q\{ U,“=lBQ. We have 

~i(‘)=,i-siX(~)COS~iei +Zi = 

‘Ihking account of (5.2) and the boundary conditions for oa and <, we obtain 

dag = 

= Ai25i 5 COST cieidei - -L j ab(x)dc+.(l), 6 + 0 
-Ui dbp6 an 

and finally, taking the limit, we have 

As previously, in order to construct the en_ergy solution of the problem in the_theory of elasticity we 
replace the requirement that a, Y E &,(Q) with the condition @, Y E &,(Q). The solution of the 
problem for the potential Q, then has the form [7] 

Q,=~, + ~b,si(x) 
i=l 

In the same way as above, we use Green’s formula for the functions 6 and Zj in the domain Qs to 
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determine the constants cti We obtain 

We recall that Zj satisfies the equation 

rZj = -gl(ri; {j)COScj4j 

By virtue of the boundary conditions in the expressions for Is, only integrals along arcs of circles of 
small radii 6 close to the comers remain. ‘Faking account of (5.2), we obtain that the integral close to 
the ith comer makes the main contribution to Is and, consequently 

16 = p<i(r)dpS = 

0. 
= Cji h jf%gsi-l COS’ 5jdej + g5’+2 X O(1) = “Cji + O(l) 

-aj 1 
wh;e;:e is the largest comer differing from ~4 

The matrix {q} is symmetric. 

In order to prove this, we use Green’s formula for the Heimholtz operator for the functions 6 and 6 in the case 
of hxed i # j. T&king account of (5.2) and the boundary conditions we obtain that integrals along arcs of small 
radius 6 close to the ith and jth corners make the main contribution to the integral along the contour. We have 

o= j daQ~=~(cji-~~)+~(l), 6+0 

Jai 

Taking the limit, we obtain the required equality. 

The set of solutions of class L2ioc(Q) for the potential Y 

Y=‘y, + ~di~i(X) 
i=l 

(5.4) 

can be obtained in an analogous manner. Here si are functions which satisfy the Helmholti equation 
in the domain Q, the homogeneous Neumann condition in aQ\Oi and admit of the representation 

({eii} is a symmetric matrix). 
The coefficients Bi of the asymptotic representation (5.1) are calculated using the formulae 

6. In order to find the solution which possesses a finite energy, we have M relations close to the comers 

3 1 aYi _ 
al;. +;x-Q(r;“h p>O, when r;:+O 
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Substituting expressions (5.3) and (5.4) into the conditions close to the comers, we obtain 2m relations 
for determining the constants bi, di 

or 

bi=di, Ai+Bi+~(ciibj+ejidj)=O, i=l...m 
j-1 

b = -(C + &‘)-‘(A + B) 

where b, A and B are m-dimensional vectors, and C and E are symmetric m x m matrices. 
Note that, when there are no comers on the contour, each of the potentials satisfies the conditions 

on the edge and, consequently, the problem can be completely reduced to two acoustic problems. 
We wish to thank S. A. Nazarov for stimulating discussions. 
This research was supported financially by the Russian Foundation for Basic Research (95-01-00644a). 
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